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The meniscus on the outside of a small circular cylinder 

By DAVID F. JAMES 
Department of Mechanical Engineering, University of Toronto 

(Received 16 August 1973) 

The method of matched asymptotic expansions is used to solve the differential 
equation describing the shape of a meniscus on the outside of a circular cylinder. 
Since the perturbation quantity is proportional to the cylinder radius, the solu- 
tion is valid basically for small oylinders. The predicted meniscus height is com- 
pared with numerical data to determine the accuracy of the two-term result; 
the third term is found but does not improve the estimate. 

1. Introduction 
When a vertical circular cylinder penetrates a large reservoir of liquid, 

an axisymmetric meniscus forms around the solid. The meniscus meets the 
cylindrical surface at  an angle dependent on the particular combination of 
liquid, solid and gas, and then approaches a horizontal plane at  large distances 
from the cylinder. The shape of the interface and the height to which the liquid 
rises on the cylinder are technically important in areas such as wire coating, but 
the differential equation governing the shape is nonlinear, and consequently 
only numerical or approximate analytical solutions are available. The approxi- 
mate methods refer to the analyses of Ferguson (1912) for cylinders of large 
radii, and of Nicholson (1949) for menisci whose inclinations are everywhere small. 
White & Tallmadge (1965) were the first to employ the computer to find the 
profile of the interface, and more comprehensive calculations were later provided 
by Huh & Scriven (1969). 

The aim of the present work is to find a solution of the governing differential 
equation by the method of matched asymptotic expansions. This technique can 
be applied here because the governing equation contains a parameter which can 
be small under some circumstances : essentially, when the cylinder radius is 
small or, less often, when the density change across the interface is slight. These 
conditions limit the usefulness of the solution, but are easily within the range of 
practical interest. 

2. Technique 
The technique of Van Dyke (1964) for matched asymptotic expansions will be 

followed in the present analysis. In  using his terminology, some confusion may 
arise with the terms ‘outer’ and ‘inner’: the outer solution will refer to the 
solution in the original (unstretched) variables and will be valid in the region 
cbse to the cylinder; conversely, the inner solution, obtained by stretching the 
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FIUURE 1. Definition sketch for a meniscus attached to the 
outside of a circular cylinder; 0 < q5 < in. 

/ i / 

FIGURE 2. Definition sketch for the case q5 > &r, when the meniscus 
is attached t o  the bottom of the cylinder. 

independent variable, will be uniformly valid far from the cylinder. Consequently 
the adjectives ‘outer’ and ‘inner’ are used solely for mathematical purposes in 
the present problem and do not refer to relative distances, as they do in boundary- 
layer flows. 

The physical situation is sketched in figure 1. A position on the axisymmetric 
liquid-gas interface is given by either x(y) or y(x), and the liquid meets the solid 
surface at  an angle q5, which is 90” minus the contact angle. When the liquid wets 
the cylindrical surface, as in the sketch, the range of values for q5 is 0 to 37~; the 
range is extended beyond 47r if the meniscus is attached to the end of the cylinder, 
as shown in figure 2. Figures 1 and 2 are drawn for positive values of q5, but the 
analysis to be presented also holds for negative values, when the liquid does not 
wet the solid surface and the meniscus is depressed. 

The governing differential equation is based on the fundamental equation of 
capillarity and has been derived in other work (see Huh & Scriven 1969, for 
example); when y is the dependent variable, the form of the equation is 



Meniscus on the outside of a small cylinder 659 

where p is the density of the liquid (or the density difference if the interface 
separates two liquids) and CT is the interfacial tension. The boundary conditions 
are (i) dy/dx = -tan q5 at x = ro and (ii) y --t 0 as x + 00. When the dimensionless 
co-ordinates z = y/ro and r = x/ro are substituted, the above equation becomes 

(1) 

where a prime denotes differentiation with respect to the independent variable. 
The dimensionless parameter e2 (often called the Bond number) can easily be less 
than unity, which suggests the application of perturbation techniques to solve 
the differential equation. Contrary to the usual practice, the inner expansion 
will be sought f i s t  in the work which follows. Proceeding this way simplifies the 
presentation, but it is necessary to presume for the moment that there is already 
an outer solution which satisfies the outer boundary condition (i) and which fails 
to vanish for large r. 

2.1. Inner solution 

To find a solution valid far from the cylinder, the independent variable r is con- 
tracted by introducing the inner variable R = er. Other choices are possible for 
the inner variable, but only the above form produces a differential equation with 
a solution which vanishes at infinity. The inner dependent variable Z(R; e) is not 
contracted, i.e. z ( r ;  E )  E Z(R;  e), and when R is substituted in (l), the differential 
equation for Z is 

zc = (I  + 2’2)  [E%( 1 + z ’ 2 ) 6  - zr/r ] ,  € 2  = pgrE/a, 

2” = (1 + €222’2) [Z( 1 + s 2 z r 2 p  - Z’/R]. (2) 

Let the asymptotic expansion for Z be 

Z(R; e )  = &(R) A,(E). 
n = O  

Since the reduced equation, obtained by formally setting E = 0 in (2), is linear, 
it is assumed that Am = e2,. Consequently, the equation for the fist term 22, is 

22; + x-12; - 2, = 0, 

for which the solutions are the modified Bessel functions of order zero, Jo and KO.  
Since only the latter satisfies the inner boundary condition that Z -+ 0 as R + co, 
the first term of the inner solution is 

2 0  = 

where the constant A is to be determined by matching with the outer solution. 
This solution was obtained earlier by Nicholson (1 949) for a meniscus whose slope 
is everywhere small, and is therefore the solution to be expected in the present 
problem for the region distant from the cylinder. 

2.2. Outer solution 

The outer solution is assumed to have the form 
m 

z(r; 4 = z Z n ( . , U E ) ,  
n = O  

(3) 
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where the form of the gauge functions 8,(a) cannot be presupposed but must be 
found by matching with the inner solution. Specifically, the first gauge function 
is found to be 8, = Ins because the one-term expansion of the preceding inner 
solution is 2 = - A  h e .  When z = z,lne is substituted into (l), the solution for 
xo(r) is a constant, say B, which matches with the inner expansion, if A = -B ,  
but which does not satisfy the outer boundary condition, x ’ (  1) = -tan #. Other 
possibilities for 8, produce first-term solutions which are more realistic and which 
satisfy the outer boundary condition, but none matches with the inner solution. 
Accordingly, the outer boundary condition must be satisfied by the second term. 

The expansion of the inner solution to two terms shows that c$(E) = O( 1) = 1, 
and consequently the differential equation for xl(r) is 

2’; + t - - lx i (  1 + q) = 0. 

The solution satisfying x i (  1)  = -tan q5 is 

x1 = D - c In {t- + (r2 - c2)t), 

where c = sin#, D is an undetermined constant, the angle 4 is restricted to 
Iq5I < &T and ( r2 - c2)4 means the positive square root of r2 - c2. This equation 
describes the shape of a catenoid (Landau & Lifshitz 1959, p. 235), the surface 
formed by interfacial tension when the pressure difference across the interface 
is zero. This shape is expected for x l ,  for z1 was obtained from (1) by letting E --f 0, 
and this procedure is equivalent to eliminating the hydrostatic pressure in the 
liquid. With z1 known, the two-term outer solution can be expanded and matched 
with the following two-term expansion of the inner solution: 

2 N Blns+B(lnt--ln2+y), 

where y is Euler’s constant (0.57721 ...). The matching yields B = -c and 
D = c(ln 4 - y),  so that the two-term outer solution is 

z(r ;  E )  - c[-lne+ln4-y-1n{r+(r2-c2)8)]. 

The maximum height H at r = 1 is therefore 

H N sin #[ln {4 /4 1 + cos #)} - y ]  ( E  -+ 0). (4) 

Since these results are limited to 1q51 < Qn-, the outer solution is reworked in the 
next section for the case 141 > Qn-. 

3. The case 141 > in- 
The physical situation for 14 I > in- differs somewhat from that sketched earlier 

and is shown in figure 2. In  this case, the liquid column has a neck and the radius 
rn there is unknown a t  the outset. Below the neck, the equations describing the 
profile are the same as those derived before, except that the outer solution must 
be altered because the outer boundary condition is now applied at the neck, viz. 
dzldr --f 00 as r --f r,. When this change is made, the two-term outer solution is 

x - rn[-ln~+ln4-y-In{r+(t-2--~)8)], x < 2,. 
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Above the neck, the solution which satisfies the reduced outer equation 
z" + r-lz'( 1 + 2'2) = 0 and the boundary condition z'( 1) = -tan q5 is 

z = E+cln{r-(r2-c2)f}, z, < z 6 H ,  
where (r2-cz)* still refers to the positive root. Fitting the two expressions 
together at the neck shows that r,  = c and E = c[ln (4/ecz) -71, so that the com- 
ponents of the two-term outer solution for 14 I > +n- are 

c[ln (41s) - y - In {r + (r2 - @)A}], z < z,, 
c[ln (4/sc2) - y + ln{r - (r2 - c2)4}], z, < z < H .  

(5a) 
( 5 6 )  

The height H can be found from the latter relation and turns out to be the same 
as that for 161 < in-. Equation (4) therefore holds for all 6. 

4. Comparison with numerical results 
The extensive tables provided by Huh & Scriven (1969) facilitate the com- 

parison of the present work with their numerical results. The comparison is in the 
form shown in figure 3, in which the values of e and # under a particular curve are 
those values for which the value of H predicted by (4) differs from the larger 

8 
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9 
FIGURE 3. The accuracy of equation (4), gauged by the numerical results of Huh & Scriven. 
The region under a given curve contains the values of E and $ for which equation (4) is 
within the prescribed percentage of the numerical result. 
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numerical value by less than the prescribed percentage. The figure indicates 
that the accuracy of the analytical result increases when €3 0 as expected, and 
when q5 is near 120". This latter behaviour appears to be related to the fact that, 
while the inner solution is an approximation for a slightly inclined surface, the 
outer solution is essentially an approximation for large or nearly vertical inclina- 
tions. Therefore it is not surprising that the approximation is best when Q is 
around in, but no explanation can be found for the particular value of 120". 

5. Higher-order terms 
A close examination of the analytical and numerical results revealed that the 

difference was approximately O(6). This suggested that the next term in the 
outer expansion might be of that order, and so an effort was made to find addi- 
tional terms in the asymptotic expansions. This continuation of the analysis, 
following the method of $ 2 ,  was straightforward and hence only a brief account 
need be given here. 

The governing equation for the second term of the inner solution is 

from which 2, can be found by the method of variation of parameters. The 
solution consists of two integrals which, fortunately, do not need to be evaluated 
explicitly since only their asymptotic forms are needed for matching with the 
outer solution. By expanding the integrands for small R (which is equivalent to 
small e), and integrating term by term, the first few terms of 2, are 

Z,(R) - $c3/R2- $c31n2R+ (&3- C) InR+ O( l),  R -+ 0, 

where C is an undetermined constant. The expansion of this solution in the outer 
variable r shows that 8, = e2 ln2 E ,  and so, from (1)  and (3), the equation governing 
the third term of the outer solution is 

2: + [( 1 + 32;2)/r] 26 = 0. 

The only solution which satisfies z;1(1) = 0 is 2, = constant, and matching with 
the inner solution shows that this constant is - &c3. The three-term outer solution 
is therefore known, and from it H is found t o  be 

€2 1n2 e] . 4 sin2 4 
E(1+ COS q5) - -4 H N sin# Pn 

A comparison with the numerical data showed that this new estimate for H is 
not an improvement over (4): the additional term must in fact be positive to 
increase the accuracy. The desired improvement might of course be realized by 
obtaining still further terms of the outer and inner expansions; this can be done 
in a fairly direct manner, but it is not clear how many terms would be required. 
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FIGURE 4. The maximum attainable angle q5mx versus the perturbation parameter 8, which 
represents (pgri/cr)*; this result pertains to the situation sketched in figure 2, where the 
meniscus is attached to the end of the cylinder. 

6. Concluding remarks 
The prediction of the height H from (4) is accurate when the parameter 

(pgrf/a)* is O(O.1) and less. For most liquids this requirement means that the 
cylinder diameter, or the characteristic dimension in other axisymmetric 
problems, should be less than about 0.6mm, a size range applicable to some 
technological problems. The accuracy of the formula as E --f 0 also suggests that 
the infinite axisymmetric meniscus can perhaps be used for measurements of 
interfacial properties. 

This paper has concentrated on the result for H ,  and has presented only 
regional profiles of the interface. By an additive composite expansion of the outer 
and inner solutions (Van Dyke 1964), an approximate equation for the entire 
interface may be obtained which is uniformly valid as 8 -+ 0; in dimensional 
terms, this equation is 

y ( x )  = rosin $ [In 2x -In {x + (x2 - @,sin* $)*) + K,{(pg/a)t x)], 

which holds for I$ ]  < &r; when > in, the surface above the neck is given 

Equation (4) reveals that H increases monotonically with $, reaches a maxi- 
mum a t  $,,, say, and then falls off for $ > $,,, (see the inset in figure 4). 
Consequently, if H is fixed, (4) admits two possible corresponding values for $. 
A simple and likely familiar experiment shows, however, that  the larger value is 
physically unrealizeable. If the meniscus is attached to  the cylinder end as shown 

by (5b ) .  
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in figure 2, then $ can vary by 90°, even though the solid-liquid contact angle 
remains fixed. Suppose that H and thus q5 are small initially and the cylinder is 
then raised slowly: q5 increases according to (4) until the maximum height is 
reached, and q5 equals &ax. A further increase causes the meniscus to break away 
of course, and if the cylinder is lowered, $ is observed to return to former values; 
i.e. q5 does not exceed &ax and attain the theoretical larger values. It is not clear 
why q5 cannot go beyond q5mrx, but it appears that this situation is unattainable 
because of an inherent instability (presumably related to the greater curvature 
of the interface). 

is dependent on the physical parameters of the 
problem, and this relation can be determined by finding the value of q5 which 
makes dH/d$ = 0 in (4). This result is illustrated in figure 4 and, like other results 
in this paper, is uniformly valid as e -+ 0. 

Note added after review. One of the reviewers referred to a Russian paper which 
he had been unable to locate but which apparently contained an analytical 
expression for the meniscus height that is similar to our own. The reference was 
to Deryagin (1946), who analysed the same problem and whose results are 
virtually unknown in the literature in the English language. Deryagin did not 
use matched asymptotic expansions, of course (for this technique was formulated 
some dozen years later), but he did find approximate solutions close to and far 
from the cylinder and then, quite remarkably, matched them correctly to yield 
an expression identical to (4). Hence, our findings are not wholly original, as first 
thought, but have been available for nearly 30 years; in view of this late dis- 
covery, it is necessary to revise the statement of our contribution. In  essence, we 
have formalized the analysis of the problem by the method of matched asymptotic 
expansions; but doing so, we have shown that Deryagin’s result is actually the 
first term in an asymptotic sequence, and we have indicated how to find higher- 
order terms. The present method also enabled us to find a single expression for the 
interface profile which is valid in all regions, i.e. the composite expansion, and 
to treat the case q5 > in-: these latter results are not obtainable by Deryagin’s 
analysis. 

The largest available angle 
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